Flyttande medelvärde I det här exemplet lär du dig hur du beräknar glidande medelvärdet för en tidsreaktor i Excel. Ett glidande medel används för att jämna ut oegentligheter (toppar och dalar) för att enkelt kunna känna igen trender. 1. Låt oss först titta på våra tidsserier. 2. Klicka på Dataanalys på fliken Data. Obs! Det går inte att hitta knappen Data Analysis Klicka här för att ladda verktyget Analysis ToolPak. 3. Välj Flytta medelvärde och klicka på OK. 4. Klicka i rutan Inmatningsområde och välj intervallet B2: M2. 5. Klicka i rutan Intervall och skriv 6. 6. Klicka i rutan Utmatningsområde och välj cell B3. 8. Skriv en graf över dessa värden. Förklaring: Eftersom vi ställer intervallet till 6 är det rörliga genomsnittet genomsnittet för de föregående 5 datapunkterna och den aktuella datapunkten. Som ett resultat utjämnas toppar och dalar. Diagrammet visar en ökande trend. Excel kan inte beräkna det rörliga genomsnittet för de första 5 datapunkterna eftersom det inte finns tillräckligt med tidigare datapunkter. 9. Upprepa steg 2 till 8 för intervall 2 och intervall 4. Slutsats: Ju större intervall desto mer topparna och dalarna utjämnas. Ju mindre intervallet desto närmare de rörliga medelvärdena ligger till de faktiska datapunkterna. Körhastighetsmätningsfilterets frekvensrespons. Ett LTI-systemets frekvenssvar är impulsresponsens DTFT. Impulssvaret för ett L-provrörsgenomsnitt är Eftersom det rörliga genomsnittliga filtret är FIR, minskar frekvenssvaret till den ändliga summan. Vi kan använda den mycket användbara identiteten för att skriva frekvensresponsen som där vi har låt oss minus jomega. N 0 och M L minus 1. Vi kan vara intresserade av storleken på denna funktion för att bestämma vilka frekvenser som går igenom filtret obetydligt och vilka dämpas. Nedan är en plot av storleken på denna funktion för L 4 (röd), 8 (grön) och 16 (blå). Den horisontella axeln varierar från noll till pi radianer per prov. Observera att frekvensresponsen i alla tre fall har en lowpass-egenskap. En konstant komponent (nollfrekvens) i ingången passerar genom filtret obetydligt. Vissa högre frekvenser, såsom pi 2, elimineras helt av filtret. Men om avsikt var att designa ett lågpassfilter, har vi inte gjort det bra. Några av de högre frekvenserna dämpas endast med en faktor på cirka 110 (för 16-punkts glidande medelvärdet) eller 13 (för det fyrapunkts glidande medlet). Vi kan göra mycket bättre än det. Ovanstående plot skapades av följande Matlab-kod: omega 0: pi400: pi H4 (14) (1-exp (-iomega4)) (1-exp (-iomega)) H8 (18) iomega8)) (1-exp (-iomega)) H16 (116) (1-exp (-iomega16)) (1-exp (-iomega)) plot (omega, abs (H4) H16)) axel (0, pi, 0, 1) Upphovsrätt kopia 2000- - University of California, BerkeleyMoving Average Filter (MA filter) Laddar. Det rörliga genomsnittliga filtret är ett enkelt Low Pass FIR-filter (Finite Impulse Response) som vanligtvis används för att utjämna en rad samplade datasignaler. Det tar M prover av ingång åt gången och tar medlet av dessa M-prover och producerar en enda utgångspunkt. Det är en väldigt enkel LPF (Low Pass Filter) struktur som kommer till nytta för forskare och ingenjörer att filtrera oönskade bullriga komponenter från de avsedda data. När filterlängden ökar (parametern M) ökar utjämnets jämnhet, medan de skarpa övergångarna i data görs alltmer stumma. Detta innebär att detta filter har utmärkt tidsdomänsvar men ett dåligt frekvenssvar. MA-filtret utför tre viktiga funktioner: 1) Det tar M-ingångspunkter, beräknar medelvärdet av de M-punkterna och producerar en enda utgångspunkt 2) På grund av beräknade beräkningskalkyler. filtret introducerar en bestämd mängd fördröjning 3) Filtret fungerar som ett lågpassfilter (med dåligt frekvensdomänsvar och ett bra domänsvar). Matlab-kod: Efter matlab-kod simuleras tidsdomänsvaret för ett M-punkts rörande medelfilter och avbildar även frekvensresponsen för olika filterlängder. Tid Domain Response: På den första tomten har vi inmatningen som går in i det glidande medelfiltret. Inmatningen är bullriga och vårt mål är att minska bruset. Nästa siffra är utgångsvaret för ett 3-punkts rörande medelfilter. Det kan härledas från figuren att 3-punkts rörande medelfilter inte har gjort mycket för att filtrera ut bruset. Vi ökar filterkranarna till 51-punkter och vi kan se att bruset i utmatningen har minskat mycket, vilket avbildas i nästa bild. Vi ökar kranarna vidare till 101 och 501 och vi kan observera att även om bullret är nästan noll övergår övergångarna drastiskt (observera lutningen på vardera sidan av signalen och jämföra dem med den ideala tegelväggsövergången i vår ingång). Frekvensrespons: Från frekvenssvaret kan det hävdas att avrullningen är mycket långsam och stoppbandets dämpning är inte bra. Med tanke på detta stoppband dämpning, klart, det rörliga genomsnittliga filtret kan inte separera ett band med frekvenser från en annan. Som vi vet att en bra prestanda i tidsdomänen leder till dålig prestanda i frekvensdomänen och vice versa. Kort sagt är det rörliga genomsnittet ett exceptionellt bra utjämningsfilter (åtgärden i tidsdomänen), men ett exceptionellt dåligt lågpassfilter (åtgärden i frekvensdomänen) Externa länkar: Rekommenderade böcker: Primär sidobalkMoving Genomsnittlig kalkylator Med en lista av sekventiell data kan du konstruera n-punkts glidande medelvärde (eller rullande medelvärde) genom att hitta medelvärdet av varje uppsättning n-punkter i följd. Om du till exempel har den beställda datasatsen 10, 11, 11, 15, 13, 14, 12, 10, 11, är det 4-punkts glidande medlet 11,75, 12,5, 13,25, 13,5, 12,25, 11,75. Flyttmedelvärden används att släta sekventiella data gör de skarpa toppar och dips mindre uttalade eftersom varje rå datapunkt ges endast en bråkdel i glidande medelvärde. Ju större värdet av n. ju mjukare grafen för glidande medelvärde jämfört med grafen för originaldata. Aktieanalytiker tittar ofta på glidande medelvärden av aktiekursdata för att förutsäga trender och se mönster tydligare. Du kan använda räknaren nedan för att hitta ett glidande medelvärde för en dataset. Antal villkor i en enkel n-punkts rörlig genomsnittsnivå Om antalet termer i ursprungsuppsättningen är d och antalet termer som används i varje genomsnitt är n. då kommer antalet villkor i den glidande genomsnittsföljden att vara Om du till exempel har en sekvens av 90 aktiekurser och tar det 14-dagars rullande genomsnittet av priserna, har den rullande genomsnittsföljden 90-114 1 77 poäng. Denna kalkylator beräknar glidande medelvärden där alla termer vägs lika. Du kan också skapa viktade glidande medelvärden där vissa termer ges större vikt än andra. Till exempel, ger större vikt till nyare data, eller skapar en centralt viktad medelvärde där de mellanliggande termerna räknas mer. Se den viktade glidande genomsnittsartikeln och kalkylatorn för mer information. Tillsammans med rörliga aritmetiska medelvärden, ser vissa analytiker också på den rörliga medianen av beställda data eftersom medianen är opåverkad av märkliga avvikare.
No comments:
Post a Comment